MATH 320: PRACTICE PROBLEMS FOR THE FINAL

There will be eight problems on the final. The following are sample problems.

Problem 1. Let \mathcal{F} be the vector space of all real valued functions on the real line (i.e. $\mathcal{F} = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$). Determine whether the following are subspaces of \mathcal{F} . Prove your answer.

- (1) $\{f \in \mathcal{F} \mid f(x) = -f(-x) \text{ for all } x\}.$
- (2) $\{f \in \mathcal{F} \mid f(0) = 1\}.$
- (3) $\{f \in \mathcal{F} \mid f(1) = 0\}.$

Problem 2. Suppose that $T: V \to V$. Recall that a subspace W is T-invariant if for all $x \in W$, we have that $T(x) \in W$.

- (1) Prove that ran(T), ker(T) are both T-invariant.
- (2) Suppose that W is a T-invariant subspace and $V = \operatorname{ran}(T) \oplus W$. Show that $W \subset \ker(T)$.

Problem 3. Suppose that $T: V \to W$ is a linear transformation and $\{v_1, ..., v_n\}$ is a basis for V. Prove that T is an isomorphism if and only if $\{T(v_1), ..., T(v_n)\}$ is a basis for W.

Problem 4. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be $T(\langle x_1, x_2, x_3 \rangle) = \langle x_1 - x_2, x_2 - x_3, x_3 - x_1 \rangle$. Let $\beta = \{\langle 1, 1, 1 \rangle, \langle 1, 1, 0 \rangle, \langle 1, -1, 0 \rangle\}$ and let e be the standard basis for \mathbb{R}^3 .

- (1) Find $[T]_{e}$.
- (2) Find $[T]_{\beta}$
- (3) Find an invertible matrix Q such that $[T]_{\beta} = Q^{-1}[T]_e Q$.

Problem 5. Prove the theorem that a linear transformation is one-toone if and only if it has a trivial kernel.

Problem 6. Determine if the following systems of linear equations are consistent

(1) x + 2y + 3z = 1 x + y - z = 0 x + 2y + z = 3(2) x + 2y - z = 1 2x + y + 2z = 3x - 4y + 7z = 4 **Problem 7.** Suppose that A, B are two $n \times n$ matrices. Prove that the rank of AB is less than or equal to the rank of B.

Problem 8. Suppose A, B are $n \times n$ matrices, such that B is obtained from A by multiplying a row of A by a nonzero scalar c. Prove that det(B) = c det(A). (You can use the definition of determinant by expansion along any row or column.)

Problem 9. Suppose M is an $n \times n$ matrix that can be written in the form

$$M = \left(\begin{array}{cc} A & B \\ 0 & I \end{array}\right)$$

where A is a square matrix. Show that det(M) = det(A).

Problem 10. A matrix A is called nilpotent if for some positive integer k, $A^k = 0$. Prove that if A is a nilpotent matrix, then A is not invertible.

Problem 11. An $n \times n$ matrix A is called orthogonal if $AA^t = I_n$. Prove that if A is orthogonal, then $|\det A| = 1$.

Problem 12. Let A be an $n \times n$ matrix. Prove that if A is diagonalizable, then so is A^t .

Problem 13. Let

$$A = \left(\begin{array}{rrrr} 1 & 3 & 0\\ 0 & 2 & -1\\ 0 & 0 & 0 \end{array}\right)$$

Show that A is diagonalizable over \mathbb{R} and find an invertible matrix C such that $C^{-1}AC = D$ where D is diagonal.

Problem 14. Let $T: V \to V$ be a linear transformation and let $x \in V$. Let W be the T-cyclic subspace of V generated by x. I.e. $W = Span(\{x, T(x), T^2(x), ...\}).$

- (1) Show that W is T invariant.
- (2) Show that W is the smallest T-invariant subspace containing x (i.e. show that any T-invariant subspace that contains x, also contains W).

Problem 15. Let

$$A = \left(\begin{array}{cc} 1 & 2\\ -2 & 1 \end{array}\right)$$

Use the Cayley-Hamilton theorem to show that $A^2 - 2A + 5I$ is the zero matrix.