MATH 320: PRACTICE PROBLEMS FOR THE FINAL

There will be eight problems on the final. The following are sample problems.

Problem 1. Let \mathcal{F} be the vector space of all real valued functions on the real line (i.e. $\mathcal{F}=\{f \mid f: \mathbb{R} \rightarrow \mathbb{R}\}$). Determine whether the following are subspaces of \mathcal{F}. Prove your answer.
(1) $\{f \in \mathcal{F} \mid f(x)=-f(-x)$ for all $x\}$.
(2) $\{f \in \mathcal{F} \mid f(0)=1\}$.
(3) $\{f \in \mathcal{F} \mid f(1)=0\}$.

Problem 2. Suppose that $T: V \rightarrow V$. Recall that a subspace W is T-invariant if for all $x \in W$, we have that $T(x) \in W$.
(1) Prove that $\operatorname{ran}(T), \operatorname{ker}(T)$ are both T-invariant.
(2) Suppose that W is a T-invariant subspace and $V=\operatorname{ran}(T) \oplus W$. Show that $W \subset \operatorname{ker}(T)$.
Problem 3. Suppose that $T: V \rightarrow W$ is a linear transformation and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V. Prove that T is an isomorphism if and only if $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for W.
Problem 4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be $T\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right)=\left\langle x_{1}-x_{2}, x_{2}-\right.$ $\left.x_{3}, x_{3}-x_{1}\right\rangle$. Let $\beta=\{\langle 1,1,1\rangle,\langle 1,1,0\rangle,\langle 1,-1,0\rangle\}$ and let e be the standard basis for \mathbb{R}^{3}.
(1) Find $[T]_{e}$.
(2) Find $[T]_{\beta}$
(3) Find an invertible matrix Q such that $[T]_{\beta}=Q^{-1}[T]_{e} Q$.

Problem 5. Prove the theorem that a linear transformation is one-toone if and only if it has a trivial kernel.
Problem 6. Determine if the following systems of linear equations are consistent
(1)

$$
\begin{aligned}
& x+2 y+3 z=1 \\
& x+y-z=0 \\
& x+2 y+z=3
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x+2 y-z=1 \\
& 2 x+y+2 z=3 \\
& x-4 y+7 z=4
\end{aligned}
$$

Problem 7. Suppose that A, B are two $n \times n$ matrices. Prove that the rank of $A B$ is less than or equal to the rank of B.

Problem 8. Suppose A, B are $n \times n$ matrices, such that B is obtained from A by multiplying a row of A by a nonzero scalar c.. Prove that $\operatorname{det}(B)=c \operatorname{det}(A)$. (You can use the definition of determinant by expansion along any row or column.)
Problem 9. Suppose M is an $n \times n$ matrix that can be written in the form

$$
M=\left(\begin{array}{cc}
A & B \\
0 & I
\end{array}\right)
$$

where A is a square matrix. Show that $\operatorname{det}(M)=\operatorname{det}(A)$.
Problem 10. A matrix A is called nilpotent if for some positive integer $k, A^{k}=0$. Prove that if A is a nilpotent matrix, then A is not invertible.

Problem 11. An $n \times n$ matrix A is called orthogonal if $A A^{t}=I_{n}$. Prove that if A is orthogonal, then $|\operatorname{det} A|=1$.

Problem 12. Let A be an $n \times n$ matrix. Prove that if A is diagonalizable, then so is A^{t}.

Problem 13. Let

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Show that A is diagonalizable over \mathbb{R} and find an invertible matrix C such that $C^{-1} A C=D$ where D is diagonal.

Problem 14. Let $T: V \rightarrow V$ be a linear transformation and let $x \in$ V. Let W be the T-cyclic subspace of V generated by x. I.e. $W=$ $\operatorname{Span}\left(\left\{x, T(x), T^{2}(x), \ldots\right\}\right)$.
(1) Show that W is T - invariant.
(2) Show that W is the smallest T-invariant subspace containing x (i.e. show that any T-invariant subspace that contains x, also contains W).

Problem 15. Let

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)
$$

Use the Cayley-Hamilton theorem to show that $A^{2}-2 A+5 I$ is the zero matrix.

